HYBRID EVENT: You can participate in person at Orlando, Florida, USA or Virtually from your home or work.

12th Edition of International Conference on Neurology and Brain Disorders

October 20-22, 2025

October 20 -22, 2025 | Orlando, Florida, USA
INBC 2017

Pre-coupling of Receptor Oligomers and Signaling Molecules. Challenging Classical Pharmacology

Speaker at Neurology Conferences - Sergi Ferre
National Institute on Drug Abuse (NID, NIH), United States
Title : Pre-coupling of Receptor Oligomers and Signaling Molecules. Challenging Classical Pharmacology

Abstract:

It has been the general assumption for several decades that the three elements of the most studied transmembrane cell signaling pathway, G protein-coupled receptors (GPCRs), G proteins and adenylyl cyclase (AC), are freely mobile molecules within the plasma membrane that interact by random collision (‘collision coupling’ mode). Two still controversial concepts are changing our classical views of GPCR physiology and pharmacology: pre-coupling and GPCR oligomerization. Pre-coupling implies that GPCRs, G proteins and the effectors are pre-coupled before receptor activation and that they do not dissociate upon activation. In addition, the phenomenon of GPCR homo- and heteromerization is becoming widely accepted. A GPCR homodimer and its cognate G protein provides a main functional symmetric unit and oligomeric entities can be viewed as multiples of dimers. A GPCR heterotetramer constituted by two molecularly different homodimers coupled to their cognate G protein and to AC seems to constitute a common structure of a GPCR heteromer. Our recent studies indicate that the canonical Gs-Gi interaction at the AC level is a specific property of the GPCR heterotetramer. In addition to the allosteric properties of ligands demonstrated when considering GPCR as putative monomeric entities, such as probe dependence and functional selectivity, GPCR heteromerization includes the possibility of allosteric interactions between different orthosteric ligands, wproviding utmost potential for drug development. The evidence for GPCR oligomerization and the elucidation of symmetrical minimal functional units of GPCR homomers and heteromers, promotes oligomerization and allosterism within GPCR oligomers as necessary elements in the research of GPCR physiology and pharmacology.

Audience Take away:

 1. Classical concepts of GPCR physiology and pharmacology need to be revisited to include the concepts of ‘pre-coupling’ and ‘GPCR oligomerization’

 2. GPCR heteromers uncover a previously unforeseen vast number of new possible subpopulations of GPCR subtypes, with specific neuronal localizations and functions.

3. GPCR heteromers represent new targets for drug development, providing utmost potential in the discovery of more efficacious compounds for the treatment of neuropsychiatric disorders

Biography:

Sergi Ferré is Senior Scientist at the National Institute on Drug Abuse. His research deals with the study of signaling complexes of G proteincoupled receptors (GPCRs), particularly those including different receptor units, GPCR heteromers. He is interested in the discovery of GPCR heteromers that can constitute therapeutic targets in neuropsychiatric disorders and in the role of GPCR heteromers determining functional differences of the products of gene polymorphisms associated with endophenotypes of neuropsychiatric disorders. His laboratory uses multiple approaches, from biophysical techniques in cell lines, to in vivo animal models, with combinations of intracranial electrical and optogenetic stimulation and in vivo microdialysis techniques

Watsapp